Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(13): 3945-3951, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38506837

RESUMO

We present a spectroscopic investigation of the vibrational and optoelectronic properties of WS2 domes in the 0-0.65 GPa range. The pressure evolution of the system morphology, deduced by the combined analysis of Raman and photoluminescence spectra, revealed a significant variation in the dome's aspect ratio. The modification of the dome shape caused major changes in the mechanical properties of the system resulting in a sizable increase of the out-of-plane compressive strain while keeping the in-plane tensile strain unchanged. The variation of the strain gradients drives a nonlinear behavior in both the exciton energy and radiative recombination intensity, interpreted as the consequence of a hybridization mechanism between the electronic states of two distinct minima in the conduction band. Our results indicate that pressure and strain can be efficiently combined in low dimensional systems with unconventional morphology to obtain modulations of the electronic band structure not achievable in planar crystals.

2.
Nat Commun ; 15(1): 1057, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316753

RESUMO

Moiré excitons (MXs) are electron-hole pairs localised by the periodic (moiré) potential forming in two-dimensional heterostructures (HSs). MXs can be exploited, e.g., for creating nanoscale-ordered quantum emitters and achieving or probing strongly correlated electronic phases at relatively high temperatures. Here, we studied the exciton properties of WSe2/MoSe2 HSs from T = 6 K to room temperature using time-resolved and continuous-wave micro-photoluminescence also under a magnetic field. The exciton dynamics and emission lineshape evolution with temperature show clear signatures that MXs de-trap from the moiré potential and turn into free interlayer excitons (IXs) for temperatures above 100 K. The MX-to-IX transition is also apparent from the exciton magnetic moment reversing its sign when the moiré potential is not capable of localising excitons at elevated temperatures. Concomitantly, the exciton formation and decay times reduce drastically. Thus, our findings establish the conditions for a truly confined nature of the exciton states in a moiré superlattice with increasing temperature and photo-generated carrier density.

3.
ACS Nano ; 18(4): 3405-3413, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38236606

RESUMO

We implemented radio frequency-assisted electrostatic force microscopy (RF-EFM) to investigate the electric field response of biaxially strained molybdenum disulfide (MoS2) monolayers (MLs) in the form of mesoscopic bubbles, produced via hydrogen (H)-ion irradiation of the bulk crystal. MoS2 ML, a semiconducting transition metal dichalcogenide, has recently attracted significant attention due to its promising optoelectronic properties, further tunable by strain. Here, we take advantage of the RF excitation to distinguish the intrinsic quantum capacitance of the strained ML from that due to atomic scale defects, presumably sulfur vacancies or H-passivated sulfur vacancies. In fact, at frequencies fRF larger than the inverse defect trapping time, the defect contribution to the total capacitance and to transport is negligible. Using RF-EFM at fRF = 300 MHz, we visualize simultaneously the bubble topography and its quantum capacitance. Our finite-frequency capacitance imaging technique is noninvasive and nanoscale and can contribute to the investigation of time- and spatial-dependent phenomena, such as the electron compressibility in quantum materials, which are difficult to measure by other methods.

4.
Nanomaterials (Basel) ; 13(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37836363

RESUMO

This work describes a resonance Raman study performed in the domes of monolayer MoS2 using 23 different laser excitation energies covering the visible and near-infrared (NIR) ranges. The multiple excitation results allowed us to investigate the exciton-phonon interactions of different phonons (A'1, E', and LA) with different excitonic optical transitions in biaxially strained monolayer MoS2. The analysis of the intensities of the two first-order peaks, A'1 and E', and the double-resonance 2LA Raman band as a function of the laser excitation furnished the values of the energies of the indirect exciton and the direct excitonic transitions in the strained MoS2 domes. It was noticed that the out-of-plane A'1 phonon mode is significantly enhanced only by the indirect exciton I and the C exciton, whereas the in-plane E' mode is only enhanced by the C exciton of the MoS2 dome, thus revealing the weak interaction of these phonons with the A and B excitons in the strained MoS2 domes. On the other hand, the 2LA Raman band is significantly enhanced at the indirect exciton I and by the A (or B) exciton but not enhanced by the C exciton, thus showing that the LA edge phonons that participate in the double-resonance process in MoS2 have a weak interaction with the C exciton.

5.
Chem Mater ; 35(4): 1818-1826, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36873626

RESUMO

A new one-dimensional hybrid iodoplumbate, namely, 4,4'-(anthracene-9,10-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium) lead iodide C30H22N2Pb2I6 (AEPyPbI), is reported here for the first time with its complete characterization. The material exhibits remarkable thermal stability (up to 300 °C), and it is unreactive under ambient conditions toward water and atmospheric oxygen, due to the quaternary nature of the nitrogen atoms present in the organic cation. The cation exhibits strong visible fluorescence under ultraviolet (UV) irradiation, and when its iodide is combined with PbI2, it forms AEPyPb2I6, an efficient light-emitting material, with a photoluminescence emission intensity comparable to that of high-quality InP epilayers. The structure determination was obtained using three-dimensional electron diffraction, and the material was extensively studied by using a wide range of techniques, such as X-ray powder diffraction, diffuse reflectance UV-visible spectroscopy, thermogravimetry-differential thermal analysis, elemental analysis, Raman and infrared spectroscopies, and photoluminescence spectroscopy. The emissive properties of the material were correlated with its electronic structure by using state-of-the-art theoretical calculations. The complex, highly conjugated electronic structure of the cation interacts strongly with that of the Pb-I network, giving rise to the peculiar optoelectronic properties of AEPyPb2I6. The material, considering its relatively easy synthesis and stability, shows promise for light-emitting and photovoltaic devices. The use of highly conjugated quaternary ammonium cations may be useful for the development of new hybrid iodoplumbates and perovskites with optoelectronic properties tailored for specific applications.

6.
Nat Commun ; 14(1): 1050, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828812

RESUMO

Since its fundamental inception from soap bubbles, Plateau's law has sparked extensive research in equilibrated states. However, most studies primarily relied on liquids, foams or cellular structures, whereas its applicability has yet to be explored in nano-scale solid films. Here, we observed a variant Plateau's law in networks of atomically thin domes made of solid two-dimensional (2D) transition metal dichalcogenides (TMDs). Discrete layer-dependent van der Waals (vdWs) interaction energies were experimentally and theoretically obtained for domes protruding in different TMD layers. Significant surface tension differences from layer-dependent vdWs interaction energies manifest in a variant of this fundamental law. The equivalent surface tension ranges from 2.4 to 3.6 N/m, around two orders of magnitude greater than conventional liquid films, enabling domes to sustain high gas pressure and exist in a fundamentally variant nature for several years. Our findings pave the way towards exploring variant discretised states with applications in opto-electro-mechanical devices.


Assuntos
Filmes Cinematográficos , Elementos de Transição , Tensão Superficial , Fatores de Transcrição
7.
Nanomaterials (Basel) ; 14(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38202532

RESUMO

Highly aligned multi-wall carbon nanotubes were investigated with scanning electron microscopy (SEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) before and after bombardment performed using noble gas ions of different masses (argon, neon and helium), in an ultra-high-vacuum (UHV) environment. Ion irradiation leads to change in morphology, deformation of the carbon (C) honeycomb lattice and different structural defects in multi-wall carbon nanotubes. One of the major effects is the production of bond distortions, as determined by micro-Raman and micro-X-ray photoelectron spectroscopy. We observe an increase in sp3 distorted bonds at higher binding energy with respect to the expected sp2 associated signal of the carbon 1s core level, and increase in dangling bonds. Furthermore, the surface damage as determined by the X-ray photoelectron spectroscopy carbon 1s core level is equivalent upon bombarding with ions of different masses, while the impact and density of defects in the lattice of the MWCNTs as determined by micro-Raman are dependent on the bombarding ion mass; heavier for helium ions, lighter for argon ions. These results on the controlled increase in sp3 distorted bonds, as created on the multi-wall carbon nanotubes, open new functionalization prospects to improve and increase atomic hydrogen uptake on ion-bombarded multi-wall carbon nanotubes.

8.
Cryst Growth Des ; 22(12): 7426-7433, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36510624

RESUMO

4,4'-(Anthracene-9,10-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium) bismuth iodide (C30H22N2)3Bi4I18 (AEPyBiI) was obtained as a black powder by a very simple route by mixing an acetone solution of BiI3 and an aqueous solution of C30H22N2I2. This novel perovskite is air and water stable and displays a remarkable thermal stability up to nearly 300 °C. The highly conjugated cation C30H22N2 2+ is hydrolytically stable, being nitrogen atoms quaternarized, and this accounts for the insensitivity of the perovskite toward water and atmospheric oxygen under ambient conditions. The cation in aqueous solution is highly fluorescent under UV irradiation (emitting yellow-orange light). AEPyBiI as well is intensely luminescent, its photoluminescence emission being more than 1 order of magnitude greater than that of high-quality InP epilayers. The crystal structure of AEPyBiI was determined using synchrotron radiation single-crystal X-ray diffraction. AEPyBiI was extensively characterized using a wide range of techniques, such as X-ray powder diffraction, diffuse reflectance UV-vis spectroscopy, Fourier transform infrared (FTIR) and Raman spectroscopies, thermogravimetry-differential thermal analysis (TG-DTA), elemental analysis, electrospray ionization mass spectroscopy (ESI-MS), and photoluminescence spectroscopy. AEPyBiI displays a zero-dimensional (0D) perovskite structure in which the inorganic part is constituted by binuclear units consisting of two face-sharing BiI6 octahedra (Bi2I9 3- units). The C30H22N2 2+ cations are stacked along the a-axis direction in a complex motif. Considering its noteworthy light-emitting properties coupled with an easy synthesis and environmental stability, and its composition that does not contain toxic lead or easily oxidable Sn(II), AEPyBiI is a promising candidate for environmentally friendly light-emitting devices.

9.
Nanomaterials (Basel) ; 12(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35957041

RESUMO

Atomic deuterium (D) adsorption on free-standing nanoporous graphene obtained by ultra-high vacuum D2 molecular cracking reveals a homogeneous distribution all over the nanoporous graphene sample, as deduced by ultra-high vacuum Raman spectroscopy combined with core-level photoemission spectroscopy. Raman microscopy unveils the presence of bonding distortion, from the signal associated to the planar sp2 configuration of graphene toward the sp3 tetrahedral structure of graphane. The establishment of D-C sp3 hybrid bonds is also clearly determined by high-resolution X-ray photoelectron spectroscopy and spatially correlated to the Auger spectroscopy signal. This work shows that the low-energy molecular cracking of D2 in an ultra-high vacuum is an efficient strategy for obtaining high-quality semiconducting graphane with homogeneous uptake of deuterium atoms, as confirmed by this combined optical and electronic spectro-microscopy study wholly carried out in ultra-high vacuum conditions.

10.
Phys Rev Lett ; 129(6): 067402, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36018658

RESUMO

Mechanical deformations and ensuing strain are routinely exploited to tune the band gap energy and to enhance the functionalities of two-dimensional crystals. In this Letter, we show that strain leads also to a strong modification of the exciton magnetic moment in WS_{2} monolayers. Zeeman-splitting measurements under magnetic fields up to 28.5 T were performed on single, one-layer-thick WS_{2} microbubbles. The strain of the bubbles causes a hybridization of k-space direct and indirect excitons resulting in a sizable decrease in the modulus of the g factor of the ground-state exciton. These findings indicate that strain may have major effects on the way the valley number of excitons can be used to process binary information in two-dimensional crystals.

11.
Small ; 18(33): e2202661, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35863913

RESUMO

The family of van der Waals (vdW) materials is large and diverse with applications ranging from electronics and optoelectronics to catalysis and chemical storage. However, despite intensive research, there remains significant knowledge-gaps pertaining to their properties and interactions. One such gap is the interaction between these materials and hydrogen, a potentially vital future energy vector and ubiquitous processing gas in the semiconductor industry. This work reports on the interaction of hydrogen with the vdW semiconductor SnS2 , where molecular hydrogen (H2 ) and H-ions induce a controlled chemical conversion into semiconducting-SnS or to ß-Sn. This hydrogen-driven reaction is facilitated by the different oxidation states of Sn and is successfully applied to form SnS2 /SnS heterostructures with uniform layers, atomically flat interfaces and well-aligned crystallographic axes. This approach is scalable and offers a route for engineering materials at the nanoscale for semiconductor technologies based on the earth-abundant elements Sn and S, a promising result for a wide range of potential applications.

12.
Nano Lett ; 22(7): 2971-2977, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35294200

RESUMO

Conversion of free-standing graphene into pure graphane─where each C atom is sp3 bound to a hydrogen atom─has not been achieved so far, in spite of numerous experimental attempts. Here, we obtain an unprecedented level of hydrogenation (≈90% of sp3 bonds) by exposing fully free-standing nanoporous samples─constituted by a single to a few veils of smoothly rippled graphene─to atomic hydrogen in ultrahigh vacuum. Such a controlled hydrogenation of high-quality and high-specific-area samples converts the original conductive graphene into a wide gap semiconductor, with the valence band maximum (VBM) ∼ 3.5 eV below the Fermi level, as monitored by photoemission spectromicroscopy and confirmed by theoretical predictions. In fact, the calculated band structure unequivocally identifies the achievement of a stable, double-sided fully hydrogenated configuration, with gap opening and no trace of π states, in excellent agreement with the experimental results.

13.
Nano Lett ; 22(4): 1525-1533, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107287

RESUMO

Hexagonal boron nitride (hBN) is widely used as a protective layer for few-atom-thick crystals and heterostructures (HSs), and it hosts quantum emitters working up to room temperature. In both instances, strain is expected to play an important role, either as an unavoidable presence in the HS fabrication or as a tool to tune the quantum emitter electronic properties. Addressing the role of strain and exploiting its tuning potentiality require the development of efficient methods to control it and of reliable tools to quantify it. Here we present a technique based on hydrogen irradiation to induce the formation of wrinkles and bubbles in hBN, resulting in remarkably high strains of ∼2%. By combining infrared (IR) near-field scanning optical microscopy and micro-Raman measurements with numerical calculations, we characterize the response to strain for both IR-active and Raman-active modes, revealing the potential of the vibrational properties of hBN as highly sensitive strain probes.

14.
ACS Appl Mater Interfaces ; 13(40): 48228-48238, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34592817

RESUMO

The outstanding mechanical performances of two-dimensional (2D) materials make them appealing for the emerging fields of flextronics and straintronics. However, their manufacturing and integration in 2D crystal-based devices rely on a thorough knowledge of their hardness, elasticity, and interface mechanics. Here, we investigate the elasticity of highly strained monolayer-thick MoS2 membranes, in the shape of micrometer-sized domes, by atomic force microscopy (AFM)-based nanoindentation experiments. A dome's crushing procedure is performed to induce a local re-adhesion of the dome's membrane to the bulk substrate under the AFM tip's load. It is worth noting that no breakage, damage, or variation in size and shape are recorded in 95% of the crushed domes upon unloading. Furthermore, such a procedure paves the way to address quantitatively the extent of the van der Waals interlayer interaction and adhesion of MoS2 by studying pull-in instabilities and hysteresis of the loading-unloading cycles. The fundamental role and advantage of using a superimposed dome's constraint are also discussed.

16.
Phys Rev Lett ; 127(4): 046101, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34355951

RESUMO

The formation of gas-filled bubbles on the surface of van der Waals crystals provides an ideal platform whereby the interplay of the elastic parameters and interlayer forces can be suitably investigated. Here, we combine experimental and numerical efforts to study the morphology of the bubbles at equilibrium and highlight unexpected behaviors that contrast with the common assumptions. We exploit such observations to develop an accurate analytical model to describe the shape and strain of the bubbles and exploit it to measure the adhesion energy between a variety of van der Waals crystals, showing sizable material-dependent trends.

17.
J Phys Chem Lett ; 12(23): 5456-5462, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34081469

RESUMO

Lead halide perovskites are outstanding materials for optoelectronics, but they typically feature low stability against external agents. To overcome this drawback, LHPs based on quaternary ammonium cations, such as phenyl viologen lead iodide (PhVPI), were found to be promising candidates, being water-resistant and thermally stable. In this Letter, the optoelectronic properties of the PhVPI are investigated by a combined experimental-theoretical approach. Although the as-prepared material is photoluminescence-inactive, a short thermal (5 min @ 290 °C) or laser annealing turns PhVPI into a highly luminescent material, in the 600-1000 nm range. The PhVPI PL emission was characterized at different annealing conditions, and the structural evolution following thermal treatments was investigated by means of X-ray diffraction, Raman, and NMR spectroscopies. Besides this, the electronic structure and emission properties were investigated by density functional theory simulations. The intense optical emission and high stability make PhVPI an intriguing material for applications related to light-emitting devices.

18.
Nanomaterials (Basel) ; 11(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429994

RESUMO

A suitable way to modify the electronic properties of graphene-while maintaining the exceptional properties associated with its two-dimensional (2D) nature-is its functionalisation. In particular, the incorporation of hydrogen isotopes in graphene is expected to modify its electronic properties leading to an energy gap opening, thereby rendering graphene promising for a widespread of applications. Hence, deuterium (D) adsorption on free-standing graphene was obtained by high-energy electron ionisation of D2 and ion irradiation of a nanoporous graphene (NPG) sample. This method allows one to reach nearly 50 at.% D upload in graphene, higher than that obtained by other deposition methods so far, towards low-defect and free-standing D-graphane. That evidence was deduced by X-ray photoelectron spectroscopy of the C 1s core level, showing clear evidence of the D-C sp3 bond, and Raman spectroscopy, pointing to remarkably clean and low-defect production of graphane. Moreover, ultraviolet photoelectron spectroscopy showed the opening of an energy gap in the valence band. Therefore, high-energy electron ionisation and ion irradiation is an outstanding method for obtaining low defect D-NPG with a high D upload, which is very promising for the fabrication of semiconducting graphane on large scale.

19.
Nanotechnology ; 32(18): 185301, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33503600

RESUMO

We report on the innovative approaches we developed for the fabrication of site-controlled semiconductor nanostructures [e.g. quantum dots (QDs), nanowires], based on the spatially selective incorporation and/or removal of hydrogen in dilute nitride semiconductor alloys [e.g. Ga(AsN) and (InGa)(AsN)]. In such systems, the formation of stable nitrogen-hydrogen complexes removes the effects nitrogen has on the alloy properties, which in turn paves the way to the direct engineering of the material's electronic-and, thus, optical-properties: not only the bandgap energy, but also the refractive index and the polarization properties of the system can indeed be tailored with high precision and in a reversible manner. Here, lithographic approaches and/or plasmon-assisted optical irradiation-coupled to the ultra-sharp diffusion profile of hydrogen in dilute nitrides-are employed to control the hydrogen implantation and/or removal process at a nanometer scale. This results in a highly deterministic control of the spatial and spectral properties of the fabricated nanostructures, eventually obtaining semiconductor nanowires with controlled polarization properties, as well as site-controlled QDs with an extremely high control on their spatial and spectral properties. The nanostructures fabricated with these techniques, whose optical properties have also been simulated by finite-element-method calculations, are naturally suited for a deterministic coupling in optical nanocavities (i.e. photonic crystal cavities and circular Bragg resonators) and are therefore of potential interest for emerging quantum technologies.

20.
Nanotechnology ; 32(3): 035707, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33017812

RESUMO

Graphane is formed by bonding hydrogen (and deuterium) atoms to carbon atoms in the graphene mesh, with modification from the pure planar sp2 bonding towards an sp3 configuration. Atomic hydrogen (H) and deuterium (D) bonding with C atoms in fully free-standing nano porous graphene (NPG) is achieved, by exploiting low-energy proton (or deuteron) non-destructive irradiation, with unprecedented minimal introduction of defects, as determined by Raman spectroscopy and by the C 1s core level lineshape analysis. Evidence of the H- (or D-) NPG bond formation is obtained by bringing to light the emergence of a H- (or D-) related sp3-distorted component in the C 1s core level, clear fingerprint of H-C (or D-C) covalent bonding. The H (or D) bonding with the C atoms of free-standing graphene reaches more than 1/4 (or 1/3) at% coverage. This non-destructive H-NPG (or D-NPG) chemisorption is very stable at high temperatures up to about 800 K, as monitored by Raman and x-ray photoelectron spectroscopy, with complete healing and restoring of clean graphene above 920 K. The excellent chemical and temperature stability of H- (and D-) NPG opens the way not only towards the formation of semiconducting graphane on large-scale samples, but also to stable graphene functionalisation enabling futuristic applications in advanced detectors for the ß-spectrum analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...